

WANG Hongping **FANG** Yiping **ZIO Enrico**

Laboratoire Génie Industriel, CentraleSupélec Gif-sur-Yvette, France Contact : <u>hongping.wang@centralesupelec.fr</u>

Risk assessment of electrical power systems considering traffic congestion

Numerical Example

Introduction

Electrified vehicles (EVs) are a promising technology for effectively relieving the environmental crisis and resources shortage [1,2]. The advantages offered by electrified vehicles is attracting more and more the attentions of governments and policies have been initiated to promote the use of EVs [3]. However, the sharp increase of charging demands of EVs is posing challenges to the existing electricity infrastructures. Especially, the advancement of EV battery and wireless charging technologies [4] further popularize the EVs and bring new threats to the stability of the power system.

Simulation procedures

(a) A part of national highway system of New York State.

Modelling

Transportation system -- Cell transmission model

 $n_i(t+1) = n_i(t) + f_i(t) - f_{i+1}(t)$ **Power system -- AC power flow model**

$$PW_{k,t}^{G} - PW_{k,t}^{B} - PW_{k,t}^{D} = \sum_{j=1}^{N} |V_{k,t}|| |V_{j,t}| (G_{kj} cos(\theta_{k,t} - \theta_{j,t})) + B_{kj} sin(\theta_{k,t} - \theta_{j,t}))$$

Fig. 1. The integrated systems.

Fig. 2. Flow chart of a single MC run.

Figure 3: IEEE 14-bus system model

(b) Extracted topological structure of

(c) Cell representation of the study network

Figure 4: The test transportation network

Figure 6: Nodal voltage magnitudes of bus bars

Results and conclusion

EV penetration

Increasing penetration of EVs, as expected, more negative impacts on power system would be cased including more severe extend of low-voltage and line overload problems and more bus and branches being involved in such problems.

(b) 25% EV penetration

Modelling a traffic incident

Characteristics of an incident:

Incident duration d: the time period between the onset of incident and clearance of the incident.

Hazard based log-logistic distribution: $f(d) = \frac{(\lambda P)(\lambda d)^{P-1}}{1+(\lambda d)^{P}}$ <u>Capacity reduction Q^p : the available capacity after an incident.</u> The doubly truncated normal distribution:

$$f_{DTN}(Q^{p}) = \begin{cases} 0 & Q^{p} < 0\\ \frac{(Q^{p})}{\int_{0}^{Q} f(Q^{p}) \cdot dQ^{p}} & 0 \le Q^{p} < Q\\ 0. & Q \le Q^{p} \end{cases}$$

Occurrence time: the time when an incident start <u>Post-incident duration</u> d_p : the time period between when the incident is cleared and when all of the delayed vehicles have flowed out the road network. <u>Observation duration T: incident duration + post-incident duration $(T = d + d_p)$ </u>

Severity quantification

The severity of the consequences on the power system is formulated as:

$$\max_{t \in T} (Sev_t(d, Q^p | C_i)) = \max_{t \in T} (\sum_b SevOL_{b,t}(d, Q^p | C_i)) + \max_{t \in T} (\sum_k SevLV_{k,t}(d, Q^p | C_i))$$

Severity of low voltage : $0.95 - V_i$

severity of overload:

Figure 5: Branch loadings at the peak load times.

Occurrence time

$\frac{V}{2}$, $V_k \le 0.95$ 0.95 $V_k > 0.95$

References

- [1] R. Sioshansi, R. Fagiani, and V. Marano, "Cost and emissions impacts of plug-in hybrid vehicles on the ohio power system," *Energy Policy*, vol. 38, no. 11, pp. 6703–6712, 2010.
- [2] T. R. Hawkins, O. M. Gausen, and A. H. Strømman, "Environmental impacts of hybrid and electric vehicles review," The International Journal of Life Cycle Assessment, vol. 17, no. 8, pp. 997–1014, 2012.
- [3] C. E. M. IEA, E. V. Initiative, et al., "Global ev outlook 2017." https://www.iea.org/ publications/freepublications/publication/GI obalEVOutlook2017.pdf, 2017.
- [4] M. Yilmaz and P. T. Krein, "Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles," IEEE Transactions on Power *Electronics*, vol. 28, no. 5, pp. 2151–2169, 2013.

occurrence time

Location of traffic incidents

Traffic incidents happened on exit roads and roads with high flow rate cause more severe consequences (of low voltage and line overload).

> Figure 9: Distributions of the severities with traffic incidents on different roads

Figure 8: The distribution of SevLV at different occurrence time

Journée de l'ED Interfaces 16 November, ENSTA

